欢迎您访问广东某某机械环保科有限公司网站,公司主营某某机械、某某设备、某某模具等产品!
全国咨询热线: 400-123-4567

新闻资讯

哈希游戏| 哈希游戏平台| 哈希游戏APP

HAXIYOUXI-HAXIYOUXIPINGTAI-HAXIYOUXIAPP

ha哈希游戏- 哈希游戏平台- 官方网站sh算法原理详解

作者:小编2025-05-09 21:51:52

  哈希游戏- 哈希游戏平台- 哈希游戏官方网站

ha哈希游戏- 哈希游戏平台- 哈希游戏官方网站sh算法原理详解

  闭散列表解决冲突的基本思想是:当冲突发生时,使用某种方法为关键码K生成一个散列地址序列d0,d1,d2,... di ,...dm-1。其中d0=h(K)称为K的基地址地置( home position );所有di(0 i m)是后继散列地址。当插入K时,若基地址上的结点已被别的数据元素占用,则按上述地址序列依次探查,将找到的第一个开放的空闲位置di作为K的存储位置;若所有后继散列地址都不空闲,说明该闭散列表已满,报告溢出。相应地,检索K时,将按同值的后继地址序列依次查找,检索成功时返回该位置di ;如果沿着探查序列检索时,遇到了开放的空闲地址,则说明表中没有待查的关键码。删除K时,也按同值的后继地址序列依次查找,查找到某个位置di具有该K值,则删除该位置di上的数据元素(删除操作实际上只是对该结点加以删除标记);如果遇到了开放的空闲地址,则说明表中没有待删除的关键码。因此,对于闭散列表来说,构造后继散列地址序列的方法,也就是处理冲突的方法。

  开散列方法的一种简单形式是把散列表中的每个槽定义为一个链表的表头。散列到一个特定槽的所有记录都放到这个槽的链表中。图9-5说明了一个开散列的散列表,这个表中每一个槽存储一个记录和一个指向链表其余部分的指针。这7个数存储在有11个槽的散列表中,使用的散列函数是h(K) = K mod 11。数的插入顺序是77、7、110、95、14、75和62。有2个值散列到第0个槽,1个值散列到第3个槽,3个值散列到第7个槽,1个值散列到第9个槽。

  一般情况下,散列表的存储空间是一个一维数组HT[M],散列地址是数组的下标。设计散列方法的目标,就是设计某个散列函数h,0=h( K ) M;对于关键码值K,得到HT[i] = K。 在一般情况下,散列表的空间必须比结点的集合大,此时虽然浪费了一定的空间,但换取的是检索效率。设散列表的空间大小为M,填入表中的结点数为N,则称为散列表的负载因子(load factor,也有人翻译为“装填因子”)。建立散列表时,若关键码与散列地址是一对一的关系,则在检索时只需根据散列函数对给定值进行某种运算,即可得到待查结点的存储位置。但是,散列函数可能对于不相等的关键码计算出相同的散列地址,我们称该现象为冲突(collision),发生冲突的两个关键码称为该散列函数的同义词。在实际应用中,很少存在不产生冲突的散列函数,我们必须考虑在冲突发生时的处理办法。

  按散列存储方式构造的存储结构称为散列表(hash table)。散列表中的一个位置称为槽(slot)。散列技术的核心是散列函数(hash function)。 对任意给定的动态查找表DL,如果选定了某个“理想的”散列函数h及相应的散列表HT,则对DL中的每个数据元素X。函数值h(X.key)就是X在散列表HT中的存储位置。插入(或建表)时数据元素X将被安置在该位置上,并且检索X时也到该位置上去查找。由散列函数决定的存储位置称为散列地址。 因此,散列的核心就是:由散列函数决定关键码值(X.key)与散列地址h(X.key)之间的对应关系,通过这种关系来实现组织存储并进行检索。

  在以下的讨论中,我们假设处理的是值为整型的关键码,否则我们总可以建立一种关键码与正整数之间的一一对应关系,从而把该关键码的检索转化为对与其对应的正整数的检索;同时,进一步假定散列函数的值落在0到M-1之间。散列函数的选取原则是:运算尽可能简单;函数的值域必须在散列表的范围内;尽可能使得结点均匀分布,也就是尽量让不同的关键码具有不同的散列函数值。需要考虑各种因素:关键码长度、散列表大小、关键码分布情况、记录的检索频率等等。下面我们介绍几种常用的散列函数。

  理想的探查函数应当在探查序列中随机地从未访问过的槽中选择下一个位置,即探查序列应当是散列表位置的一个随机排列。但是,我们实际上不能随机地从探查序列中选择一个位置,因为在检索关键码的时候不能建立起同样的探查序列。然而,我们可以做一些类似于伪随机探查( pseudo-random probing )的事情。在伪随机探查中,探查序列中的第i个槽是(h(K) ri) mod M,其中ri是1到M - 1之间数的“随机”数序列。所有插入和检索都使用相同的“随机”数。探查函数将是 p(K,i) = perm[i - 1], 这里perm是一个长度为M - 1的数组,它包含值从1到M – 1的随机序列。

  例9.7 已知一组关键码为(26,36,41,38,44,15,68,12,06,51,25),散列表长度M= 15,用线性探查法解决冲突构造这组关键码的散列表。 因为n=11,利用除余法构造散列函数,选取小于M的最大质数P=13,则散列函数为:h(key) = key%13。按顺序插入各个结点: 26: h(26) = 0,36: h(36) = 10, 41: h(41) = 2,38: h(38) = 12, 44: h(44) = 5。 插入15时,其散列地址为2,由于2已被关键码为41的元素占用,故需进行探查。按顺序探查法,显然3为开放的空闲地址,故可将其放在3单元。类似地,68和12可分别放在4和13单元中.

  尽管散列函数的目标是使得冲突最少,但实际上冲突是无法避免的。因此,我们必须研究冲突解决策略。冲突解决技术可以分为两类:开散列方法( open hashing,也称为拉链法,separate chaining )和闭散列方法( closed hashing,也称为开地址方法,open addressing )。这两种方法的不同之处在于:开散列法把发生冲突的关键码存储在散列表主表之外,而闭散列法把发生冲突的关键码存储在表中另一个槽内。

  例如,已知哈希表长度m=11,哈希函数为:H(key)= key % 11,则H(47)=3,H(26)=4,H(60)=5,假设下一个关键字为69,则H(69)=3,与47冲突。如果用线性探测再散列处理冲突,下一个哈希地址为H1=(3 1)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 2)% 11 = 5,还是冲突,继续找下一个哈希地址为H3=(3 3)% 11 = 6,此时不再冲突,将69填入5号单元,参图8.26 (a)。如果用二次探测再散列处理冲突,下一个哈希地址为H1=(3 12)% 11 = 4,仍然冲突,再找下一个哈希地址为H2=(3 - 12)% 11 = 2,此时不再冲突,将69填入2号单元,参图8.26 (b)。如果用伪随机探测再散列处理冲突,且伪随机数序列为:2,5,9,……..,则下一个哈希地址为H1=(3 2)% 11 = 5,仍然冲突,再找下一个哈希地址为H2=(3 5)% 11 = 8,此时不再冲突,将69填入8号单元,参图8.26 (c)。

  假设关键字集合中的每个关键字都是由 s 位数字组成 (u1, u2, …, us),分析关键字集中的全体,并从中提取分布均匀的若干位或它们的组合作为地址。数字分析法是取数据元素关键字中某些取值较均匀的数字位作为哈希地址的方法。即当关键字的位数很多时,可以通过对关键字的各位进行分析,丢掉分布不均匀的位,作为哈希值。它只适合于所有关键字值已知的情况。通过分析分布情况把关键字取值区间转化为一个较小的关键字取值区间。